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= High-p linear confinement configurations are

intrinsically unstable to interchange or fluting
modes due to unfavorable field line curvature.

= In FRCs, the ions generally carry much of the
diamagnetic current, and the concomitant plasma
rotation produces a much more dominant
instability drive force.

= The dominant instability under these conditions is

the rotational n=2 instability, which is nearly
ubiquitous in the formed FRCs.
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Outlme =,

= Rotational instabilities in 0-pinch formed
FRCs

= lon rotation and structure of rotational
modes in RMF driven FRCs in TCS

= Evidence of stabilizing effects from RMF
»= Influence of RMF antenna geometries

= Summary and conclusions

US Japan CT2004 Sept 14 16 Santa Fe NM 3



FRC stablllty N

e

# Internal tilt starts out as an axial n=1

shift mode
— Highly unstable, predicted by MHD

— But has not been observed
Side View experimentally

# Rotational n=2 mode is the dominant
global instability observed
experimentally

— Driven by centrifugal force due to
plasma rotation

— Leading to Rayleigh-Taylor type
instability

End View
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Rotational instabilities in 6-pinch formed __
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» Simple Rayleigh-Taylor analysis:
_ ~_(r) o
w’ = -g/[6,(1/4 8, *H(nw/h)*+k*)] <0,
g=Q7% k=n/r
Growth rate: y =~ (g/4,)"”

s MHD with FLR corrections =
Instability threshold: o= Q/Q.*>1

#» Static multipole stabilization:
B, /2u,>_(p)r
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Ion rotatlon in RMF drlven FRCs Pyt
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» Plasma spins up in electron diamagnetic direction due to the RMF
applied torque, contrary to 6-pinch formed FRCs.

s ;= Q" for most FRCs except at hlgh o due to reduced RMF torque.
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Rotational instabilities in 6-pinch & .
RMF formed FRCs Ppe
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& _-pinch FRC: n=2 is destructive = s RMF FRC: n=2 is non-destructive
» Usually stabilized by » Stable when RMF antennas cover

central portlon
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‘=2 mode seen by tomography 2=,

40

a0

20

10

y(cm)
y(cm)

-10

-20

-30

- -0
400 30 =200 -10 0 10 20 30 40 400 30 =200 -10 0 10 20 30 40

x{cm) X(cm)

n=2 mode rotates in the , In the same
direction as RMF.
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B, (mT)

Internal structure of n=2 modes Pt
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n=2 distortions are localized outside the field null, o _, = w,, £, = 0.

Driven by ion rotation outside field null
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# Oscillations are
significantly
reduced at edge
where RMF is
strong.

# Can be completely
suppressed by
keeping the
separatrix radius r,
sufficiently close to
the wall.

hg2004.7

Radius (m)
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Simple theory for RMF stabilization
(appllcable to any plasma column) Ppe’

» Rayleigh-Taylor analysis
B ~_(’,.) ei(n@-wt)

y ~ (g/5p)1/2

» Radial force due to RMF
F.=2B_ 2/(u, *) (r/r) e?lsDL 7

» Effective growth rate
=(Q2°r/6~F, Ip )" F.,=F,_Ir

» Stability threshold

=B’/ ,21.3{(p)Q7r]
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2D (r,_) simulation — with fixed stipulated
elllptlcal dlstortlon P
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» Inward force due to RMF (j B ) changes as FRC column distorts
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Stablllty dlagram S
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» Operation with shorter antennas was less prone to n=2 mode.

» Plasma at ends rotates at a slower rate with a strong flow shear:
dv,/dz ~10°s' ~ 0.4 kV ,, which may be stabilizing.
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Effect of anti-// RMF configuration P o
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» Anti-// RMF proposed by Cohen- = Also appeared to be even more
Milroy as means of keeping even stabilizing to rotational
the edge fields closed. instabilities.
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Quadrupole RMF proposed as even better
stabilization geometry — it wasn’t! Ppe’
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# Quadrupole RMF formed FRCs and drove currents just as well as
normal dipole antennas

» But, less efficient in stabilizing the n=2 mode, possibly due to
insufficient RMF near the field null where centrifugal force is strong.
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POSSIble effect on t|It mode Pragt

# No tilt modes have been
RMF observed for FRCs lasting
over 500 tilt growth times:
e ~ M2V, ~ 20 ps

# RMF may also have some
influence on tilt stability
since it can act somewhat
inside the separatrix.

2004 64

# Axial variation in RMF fields
seem to be beneficial
in experiments with both
shorter antenna lengths and
anti-parallel antennas.
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As in conventional 6-pinch formed FRCs, rotational

modes have been observed in RMF formed FRCs with
(l)n=2 = (Di.

Rotational instabilities are localized near the field null,
significantly reduced at the edge where RMF is strong.

Can be further reduced by the use of either or
current drive.

In contrast, FRCs produced by the
are more prone to rotational instabilities.

No tilt instability has been observed in RMF driven
FRCs with the configuration time lasting over 500 T,
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